Membrane fission by protein crowding.
نویسندگان
چکیده
Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.
منابع مشابه
Structural inhibition of dynamin-mediated membrane fission by endophilin
Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show b...
متن کاملThe mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells.
Mitochondria are dynamic organelles that change morphology by controlled fission and fusion events. Mitochondrial fission is regulated by a conserved protein complex assembled at the outer membrane. Human MTP18 is a novel nuclear-encoded mitochondrial membrane protein, implicated in controlling mitochondrial fission. Upon overexpression of MTP18, mitochondrial morphology was altered from filame...
متن کاملThe novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells.
Few components of the mitochondrial fission machinery are known, even though mitochondrial fission is a complex process of vital importance for cell growth and survival. Here, we describe a novel protein that controls mitochondrial fission. This protein was identified in a small interfering RNA (siRNA) screen using Drosophila cells. The human homologue of this protein was named Mitochondrial fi...
متن کاملBAR Domain Scaffolds in Dynamin-Mediated Membrane Fission
Biological membranes undergo constant remodeling by membrane fission and fusion to change their shape and to exchange material between subcellular compartments. During clathrin-mediated endocytosis, the dynamic assembly and disassembly of protein scaffolds comprising members of the bin-amphiphysin-rvs (BAR) domain protein superfamily constrain the membrane into distinct shapes as the pathway pr...
متن کاملRegulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1.
Mitochondrial fission is a highly regulated process mediated by a defined set of protein factors and is involved in the early stage of apoptosis. In mammals, at least two proteins, the dynamin-like protein DLP1/Drp1 and the mitochondrial outer membrane protein hFis1, participate in mitochondrial fission. The cytosolic domain of hFis1 contains six alpha-helices that form two tetratricopeptide re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 16 شماره
صفحات -
تاریخ انتشار 2017